



# LOWENCO - SRS

## Supplier Requirement Specifications

LOWENCO A/S · Bavnevej 10 · DK-6580 Vamdrup · Tel. +45 38 400 300 · [www.lowenco.com](http://www.lowenco.com)

CREATING A BETTER WORLD - ONE UNIT AT A TIME

## 1 Contents

|                                                          |    |
|----------------------------------------------------------|----|
| Content.....                                             | 4  |
| 1. Tag. Numbers.....                                     | 5  |
| 1.1    Freezer Tag Numbers:.....                         | 5  |
| 1.2    Freezer Placement .....                           | 6  |
| 1.3    PI&D TAG NO:.....                                 | 7  |
| 2    Concrete Construction Beneath Freezer .....         | 9  |
| 2.1    Dimension of the Plinths or Fiber Blocks: .....   | 9  |
| 2.2    Placement of the Plinths or Fiber Blocks: .....   | 11 |
| 2.3    Plinth Load.....                                  | 11 |
| 3    Cable Penetration -70°C Panels .....                | 12 |
| 4    Weight of Equipment.....                            | 13 |
| 5    Interface With Lowenco Equipment.....               | 14 |
| 6    Power Supply .....                                  | 15 |
| 6.1    Storage Freezer.....                              | 15 |
| 6.2    Blast Freezer .....                               | 15 |
| 6.3    Corridor.....                                     | 16 |
| 6.4    Anteroom .....                                    | 16 |
| 6.5    Common .....                                      | 16 |
| 7    Automation Requirement.....                         | 17 |
| 7.1    IP addresses for 2-pack Freezer installation..... | 17 |
| 7.2    HMI Screen and Access Levels.....                 | 17 |
| 7.3    Page Tree.....                                    | 18 |
| 8    Material and Design Requirements .....              | 19 |
| 8.1    Supplier List / Manufacturer.....                 | 19 |
| 8.2    RSPL – Recommended Spare Parts List.....          | 19 |
| 9    Trolley Designs For LSSU .....                      | 20 |
| 9.1    Universal Trolley - 1 Liter Bottle.....           | 20 |
| 9.2    Universal Trolley - 2 Liter Bottle.....           | 21 |
| 9.3    Universal Trolley – 4 Liter Bottle .....          | 22 |
| 9.4    Universal Trolley – 6 Liter Bags.....             | 23 |
| 10    Condensate Drain .....                             | 24 |
| 10.1    Drain Placement .....                            | 24 |
| 11    Dimensions.....                                    | 25 |
| 11.1    LSSU .....                                       | 25 |

|        |                                              |                                     |
|--------|----------------------------------------------|-------------------------------------|
| 12     | Documentation Package (SDI) .....            | 26                                  |
| 13     | Performance Testing .....                    | 27                                  |
| 13.1   | Temperature Probe Location .....             | 27                                  |
| 13.2   | HMI Inlet and Outlet Temperature Curve ..... | 28                                  |
| 14     | Pipe Labelling .....                         | 29                                  |
| 14.1   | Design .....                                 | 30                                  |
| 15     | Electrical Requirements .....                | 31                                  |
| 15.1   | Cable Labeling .....                         | 31                                  |
| 15.2   | Cable Type .....                             | 31                                  |
| 15.3   | Cable Color Codes .....                      | 31                                  |
| 15.3.1 | Control Panels .....                         | 31                                  |
| 15.3.2 | Installation .....                           | 32                                  |
| 16     | Pipe Size .....                              | 32                                  |
| 16.1   | Freezer Piping .....                         | 32                                  |
| 16.2   | Dry Cooler .....                             | <b>Error! Bookmark not defined.</b> |
| 17     | Thermo-Well .....                            | 33                                  |
| 17.1   | Location .....                               | 33                                  |
| 17.2   | Design .....                                 | 34                                  |
| 18     | Cooling of Compressor-skid .....             | 35                                  |
| 18.1   | Dry Cooler .....                             | <b>Error! Bookmark not defined.</b> |
| 18.2   | Dry Cooler Construction Design .....         | 35                                  |
| 18.3   | Dry Cooler Design & Dimensions .....         | 37                                  |
| 19     | Parameters List -70°C .....                  | 38                                  |
| 20     | Airflow / Circulation .....                  | 39                                  |
| 20.1   | Freezer Airflow Directions .....             | 39                                  |
| 21     | Required Temperature For Tech-Space .....    | 40                                  |
| 22     | Site Requirements .....                      | 40                                  |

## Content

LOWENCO's SRS (Supplier Requirement Specification) is intended for the Client who wants to purchase a LSSU Freezer from LOWENCO.

This SRS is a technical description of what is expected of the Client regarding power supply, site requirements, concrete construction etc.

In this document you will also find LOWENCO's standard Trolleys which is included in the quotation without extra cost.

If the customer wants to differ from any of these standard requirements/information's LOWENCO will need to know as soon as possible and no later than receiving the PO.

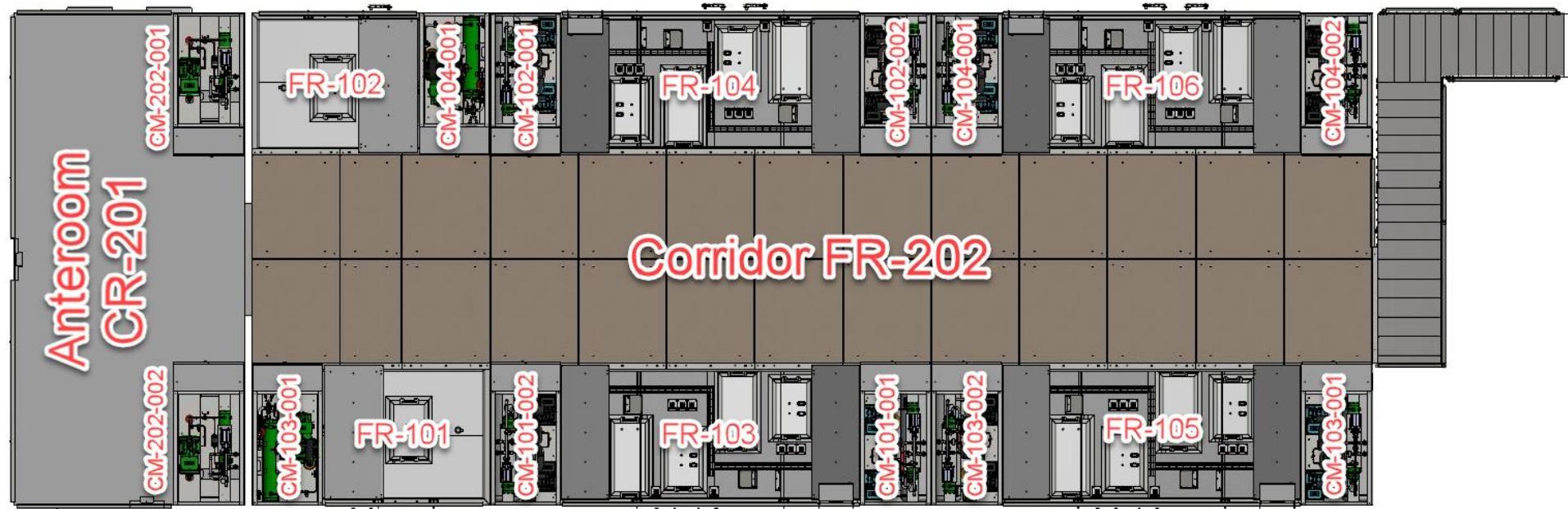
In case the Client doesn't meet LOWENCO's site requirements, LOWENCO can at any time invoice the Client for delays relating to the project without any further notice.

## 1. Tag. Numbers

In the chart below you will see LOWENCO's Standard TAG. NO which is included in a potential quote.

If the Client want to differ from these, it will come with an extra price and LOWENCO will need these TAG. NO. when signing the P.O at the latest. The TAG. No. can't be any longer than 15 signs/symbols.

### 1.1 Freezer Tag numbers:


The Standard LOWENCO Tag numbers are based on the following:

- CR = Cold Room
- CM = Cold Machine
- CP = Control Panel
- FR = Freezer

| Common HMI Panel       |                |
|------------------------|----------------|
| Common HMI Panel       | HMI-301-TS     |
| Common HMI Panel       | HMI-302-AR     |
| Anteroom 2-8°C         |                |
| <b>Anteroom</b>        | <b>CR-201</b>  |
| Compressor-Skid        | CM-201-001     |
| Control Panel          | =CP-201-001+A1 |
| Corridor -25°C         |                |
| <b>Corridor</b>        | <b>FR-202</b>  |
| Compressor-Skid Sys 1  | CM-202-001     |
| Compressor-Skid Sys 2  | CM-202-002     |
| Control Panel Sys 1    | =CP-202-001+A1 |
| Control Panel Sys 2    | =CP-202-002+B1 |
| Common Panel           | =CP-202-003+C1 |
| Freezer -70°C/-40°C    |                |
| <b>Blast Freezer 1</b> | <b>FR-101</b>  |
| Compressor-Skid Sys 1  | CM-101-001     |
| Control Panel Sys 1    | =CP-101-001+A1 |
| <b>Blast Freezer 2</b> | <b>FR-102</b>  |
| Compressor-Skid Sys 1  | CM-102-001     |
| Control Panel Sys 1    | =CP-102-001+A1 |

| Freezer -70°C/-40°C   |                |
|-----------------------|----------------|
| <b>Freezer 3</b>      | <b>FR-103</b>  |
| Compressor-Skid Sys 1 | CM-103-001     |
| Compressor-Skid Sys 2 | CM-103-002     |
| Control Panel Sys 1   | =CP-103-001+A1 |
| Control Panel Sys 2   | =CP-103-002+B1 |
| Common Panel          | =CP-103-003+C1 |
| <b>Freezer 4</b>      | <b>FR-104</b>  |
| Compressor-Skid Sys 1 | CM-104-001     |
| Compressor-Skid Sys 2 | CM-104-002     |
| Control Panel Sys 1   | =CP-104-001+A1 |
| Control Panel Sys 2   | =CP-104-002+B1 |
| Common Panel          | =CP-104-003+C1 |
| <b>Freezer 5</b>      | <b>FR-105</b>  |
| Compressor-Skid Sys 1 | CM-105-001     |
| Compressor-Skid Sys 2 | CM-105-002     |
| Control Panel Sys 1   | =CP-105-001+A1 |
| Control Panel Sys 2   | =CP-105-002+B1 |
| Common Panel          | =CP-105-003+C1 |
| <b>Freezer 6</b>      | <b>FR-106</b>  |
| Compressor-Skid Sys 1 | CM-106-001     |
| Compressor-Skid Sys 2 | CM-106-002     |
| Control Panel Sys 1   | =CP-106-001+A1 |
| Control Panel Sys 2   | =CP-106-002+B1 |
| Common Panel          | =CP-106-003+C1 |

## 1.2 Freezer Placement



### 1.3 PI&D TAG NO:

| Description                              | Tags  | Bookmark                  |
|------------------------------------------|-------|---------------------------|
| LT Compressor                            | COM01 | Compressor1               |
| HT Compressor                            | COM02 | Compressor2               |
| Crankcase Heater 1                       | CH01  | Crankcaseheater1          |
| Crankcase Heater 2                       | CH02  | Crankcaseheater2          |
| Condenser                                | CON01 | Condenser1                |
| Check Valve                              | CV01  | Checkvalve1               |
| Check Valve                              | CV02  | Checkvalve2               |
| Check Valve                              | CV03  | Checkvalve3               |
| Check Valve                              | CV04  | Checkvalve4               |
| Check Valve                              | CV05  | Checkvalve5               |
| Check Valve                              | CV06  | Checkvalve6               |
| Start Pressure Regulator                 | CVP01 | Pressureregulator1        |
| Deaerator                                | DA01  | Deaerator1                |
| Deaerator                                | DA02  | Deaerator2                |
| Deaerator                                | DA03  | Deaerator3                |
| Deaerator                                | DA04  | Deaerator4                |
| Dry Cooler + Fan                         | DC01  | Drycooler1                |
| Dual Changeover Valve 925                | DCV01 | DualValve1                |
| Dual Changeover Valve 925                | DCV02 | DualValve2                |
| Dual Changeover Valve 925                | DCV03 | DualValve3                |
| Dual Changeover Valve 925                | DCV04 | DualValve4                |
| Electronic Expansion Valve               | EEV01 | Electronicexpansionvalve1 |
| Evaporator                               | EV01  | Evaporator1               |
| Evaporator Fan                           | EF01  | Evaporatorfan1            |
| Expansion Tank                           | ET01  | Expansiontank1            |
| Expansion Tank                           | ET02  | Expansiontank2            |
| Filter Drier                             | FD01  | Filterdrier1              |
| Filter Drier                             | FD02  | Filterdrier2              |
| LT Liquid Receiver                       | LR01  | LTLiquidreciver1          |
| Oil Return Solenoid Valve                | MV01  | Solenoidvalve1            |
| Discharge Line Shut Off Solenoid Valve   | MV02  | Solenoidvalve2            |
| LT Hot Gas Defrost Solenoid Valve        | MV03  | Solenoidvalve3            |
| Expansion Tank Oil Return Solenoid Valve | MV04  | Solenoidvalve4            |
| Expansion Tank Solenoid Valve            | MV05  | Solenoidvalve5            |
| HT Liquid Line Solenoid                  | MV06  | Solenoidvalve6            |
| Expansion Tank Startup Solenoid Valve    | MV07  | Solenoidvalve7            |
| Expansion Tank Solenoid Valve 5/8"       | MV08  | Solenoidvalve8            |
| Cascade Exchanger                        | HEX01 | Cascadeexchanger1         |
| Oil Strainer                             | OF01  | Oilstrainer1              |
| Oil Separator                            | OS01  | Oilseperator1             |
| Circulation Pump                         | PUM01 | Circulationpump1          |
| LT Suction Pressure Safety Switch        | PS01  | Pressuresafetyswitch1     |
| LT Discharge Pressure Safety Switch      | PS02  | Pressuresafetyswitch2     |
| HT Suction Pressure Safety Switch        | PS03  | Pressuresafetyswitch3     |
| HT Discharge Pressure Safety Switch      | PS04  | Pressuresafetyswitch4     |
| Pressure Safety Valve                    | PSV01 | Pressuresafetyvalve1      |
| Pressure Safety Valve                    | PSV02 | Pressuresafetyvalve2      |

|                                    |       |                             |
|------------------------------------|-------|-----------------------------|
| Pressure Safety Valve              | PSV03 | Pressuresafetyvalve3        |
| Pressure Safety Valve              | PSV04 | Pressuresafetyvalve4        |
| Pressure Safety Valve              | PSV05 | Pressuresafetyvalve5        |
| Pressure Safety Valve              | PSV06 | Pressuresafetyvalve6        |
| Pressure Safety Valve              | PSV07 | Pressuresafetyvalve7        |
| Pressure Safety Valve              | PSV08 | Pressuresafetyvalve8        |
| Pressure Safety Valve              | PSV09 | Pressuresafetyvalve9        |
| LT Suction Press.                  | PT01  | Pressuretransmitter1        |
| LT Discharge Press.                | PT02  | Pressuretransmitter2        |
| Exchanger Press.                   | PT03  | Pressuretransmitter3        |
| HT Suction Press.                  | PT04  | Pressuretransmitter4        |
| HT Discharge Press.                | PT05  | Pressuretransmitter5        |
| Expansion Tank Press.              | PT06  | Pressuretransmitter6        |
| Glycol Pressure Transmitter        | PT07  | Pressuretransmitter7        |
| Expansion Tank Press.              | PT08  | Pressuretransmitter8        |
| Suction Accumulator                | SA01  | Suctionaccumulator1         |
| Suction Accumulator                | SA02  | Suctionaccumulator2         |
| Water Cooled Superheat Remover     | SC01  | Superheatremover1           |
| Refrigerant Valve                  | SFV01 | Refrigerationvalve1         |
| Refrigerant Valve                  | SFV02 | Refrigerationvalve2         |
| Refrigerant Valve                  | SFV03 | Refrigerationvalve3         |
| Refrigerant Valve                  | SFV04 | Refrigerationvalve4         |
| Refrigerant Valve                  | SFV05 | Refrigerationvalve5         |
| Refrigerant Valve                  | SFV06 | Refrigerationvalve6         |
| Refrigerant Valve                  | SFV07 | Refrigerationvalve7         |
| Refrigerant Valve                  | SFV08 | Refrigerationvalve8         |
| Refrigerant Valve                  | SFV09 | Refrigerationvalve9         |
| Refrigerant Valve                  | SFV10 | Refrigerationvalve10        |
| Refrigerant Valve                  | SFV11 | Refrigerationvalve11        |
| Refrigerant Valve                  | SFV12 | Refrigerationvalve12        |
| Refrigerant Valve                  | SFV13 | Refrigerationvalve13        |
| Sight Glass                        | SG01  | Sightglass1                 |
| Sight Glass                        | SG02  | Sightglass2                 |
| Sight Glass                        | SG03  | Sightglass3                 |
| Thermostatic Expansion Valve       | TEV01 | Thermostaticexpansionvalve1 |
| Evaporator Air In Temp.            | TT01  | Temperaturetransmitter1     |
| Evaporator Air Out Temp.           | TT02  | Temperaturetransmitter2     |
| Coil Temp.                         | TT03  | Temperaturetransmitter3     |
| Exchanger Temp.                    | TT04  | Temperaturetransmitter4     |
| Glycol Temp.                       | TT05  | Temperaturetransmitter5     |
| LT Discharge Temp.                 | TT06  | Temperaturetransmitter6     |
| Ambient Temp.                      | TT07  | Temperaturetransmitter7     |
| 3-WAY Flow Reg. Valve + Controller | VS01  | 3-wayvalve1                 |
| Manual Isolating Water Valve       | WV01  | Watervalve1                 |
| Manual Isolating Water Valve       | WV02  | Watervalve2                 |
| Manual Isolating Water Valve       | WV03  | Watervalve3                 |
| Manual Isolating Water Valve       | WV04  | Watervalve4                 |
| Manual Isolating Water Valve       | WV05  | Watervalve5                 |
| Manual Isolating Water Valve       | WV06  | Watervalve6                 |

## 2 Concrete Construction underneath the Freezer

*As standard it is the Client's responsibility to construct the preferred concrete plinths including the dimensions underneath the Freezers.*

- The concrete floor needs to be level  $\pm 1\text{mm}$  on each Plinth, without any variations from Plinth to Plinth. This is essential for the Freezer airflow and the Trolleys/Drawers to operate correct.
- It is the Client's responsibility to assure the concrete floor are level  $\pm 1\text{mm}$  from Plinth to Plinth.
- If the floor is not level  $\pm 1\text{mm}$  on the Plinths, LOWENCO will not take any responsibility regarding the functionality of the system and the drain system for the Freezers.
- There is no need for a drain system underneath the freezer, If LOWENCO's plan regarding the placement of the LSSU's is followed. If the Client wish to install the freezers in a concrete pit below ground level, a sufficient drainage system needs to be installed prior to the installation.
- The Freezer will be placed on top of 100mm fiber blocks or on minimum 100mm concrete Plinths several places underneath the Freezer. This is to ensure airflow/circulation under the Freezer. (Preferred solution: Concrete Plinths of 600mm)
- If the Freezer are to be placed on concrete Plinths, it is the Client's responsibility to assure the Plinths are level  $\pm 1\text{mm}$

### 2.1 Dimensions of The Plinths or Fiber Blocks:

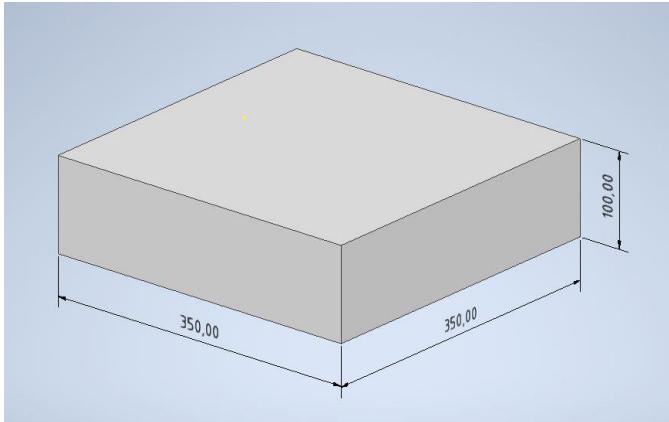
#### Concrete Plinths:

Note: Preferred height: 700mm

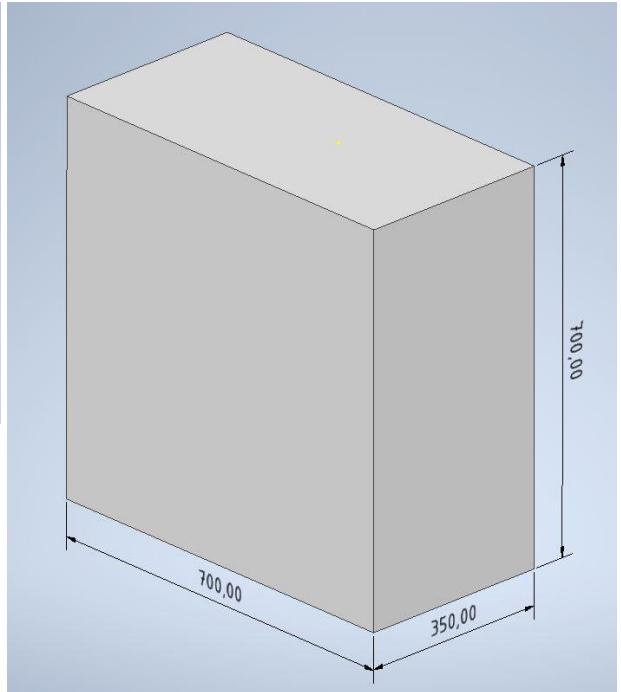
Length (A) = 700mm  $\pm 5\text{mm}$

Width (B) = 350mm  $\pm 5\text{mm}$

Height (C) = 700mm  $\geq 300\text{mm}$


#### Fiber Blocks:

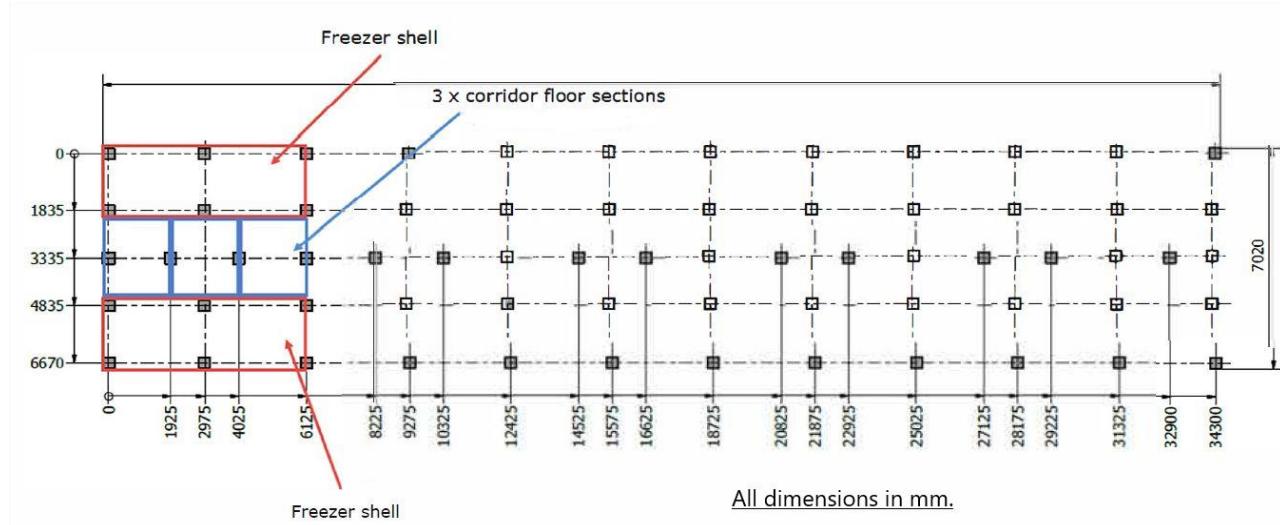
Note: Preferred height: 100mm


Length (A) = 350mm  $\pm 5\text{mm}$

Width (B) = 350mm  $\pm 5\text{mm}$

Height (C) = 200mm  $\geq 100\text{mm}$




Above is a 3D picture of a potential Fiber Block with the dimensions of 350x350x100 (L\*W\*H)



Above is a 3D picture of a potential Concrete Plinth with the preferred dimensions of 700x350x700mm (L\*W\*H)

## 2.2 Placement of the Plinths or Fiber Blocks:

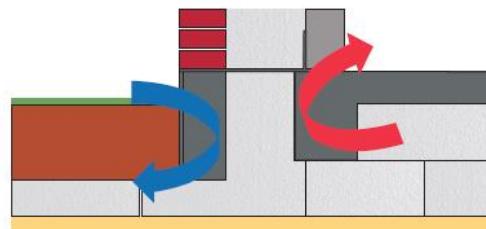
For every 2 pcs. of Freezers there are 3 corridor floor sections and 5 roof sections as shown below.



When additional Freezers are added, the 2 Freezers which are placed up against each other is sharing 2 Plinths as shown below.

## 2.3 Plinth Load

| Item                                                    | Dry weight [kg] | External load [kg] | Misch. Load [kg] | Total load | No. of plinths | Load per plinth [kg]<br>incl. 50% safety | Comments                                                                                                 |
|---------------------------------------------------------|-----------------|--------------------|------------------|------------|----------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 1 x Freezer shell                                       | 4000            | 3200               | 1600             | 8800       | 6              | 2200                                     | Uniformly distributed load, trolleys (800 kg) and personnel (400 kg) included in misch. Load.            |
| 2 x compressor skids                                    | 1600            | 800                | 250              | 2650       | 6              | 663                                      | Compressor skids incl. Supporting pipeworks and equipment                                                |
| 5 x Corridor roof section incl. Loads and equipment     | 1025            | 1000               | 0                | 2025       | 6              | 506                                      | Including steel, checker plate and kingspan panel. Load added to freezer load (1/2 of total per freezer) |
| 3 x Corridor floor section incl. Personnel and trolleys | 1200            | 2500               | 0                | 3700       | 6              | 925                                      | Incl. Steel checker plate and kingpan panel                                                              |
|                                                         |                 |                    |                  | Total      |                | 4294                                     |                                                                                                          |


Worst case load are where 2 freezers share 1 plinth.  
Installation works does not introduce significant horizontal load conditions (10-15%)

| Worst case load | 8588 | Kg |
|-----------------|------|----|
|                 |      |    |

### 3 Cable Penetration -70°C Panels

There can under NO circumstance be any cable penetration through the -70°C panels. This is very important to ensure an airtight and efficient chamber. If cables are penetrating the panels, it will be a lot more difficult to assure the right temperature inside the Freezer, together with assuring the temperature of the products. This is because a thermal bridging will occur and therefore the insulation level is a lot worse at the penetration, which will make the overall conditions for the Compressor Skids worse, and the Compressors therefore needs to have a higher cooling capacity.

An example of a good thermal bridging, where the cold air is kept inside and the warm air stays outside because of a solid insulation wall.



## 4 Weight of Equipment

Approximate weight sheet for LOWENCO's equipment regarding different products (LSSU) and the equipment for each Freezer together with heavy replaceable equipment.

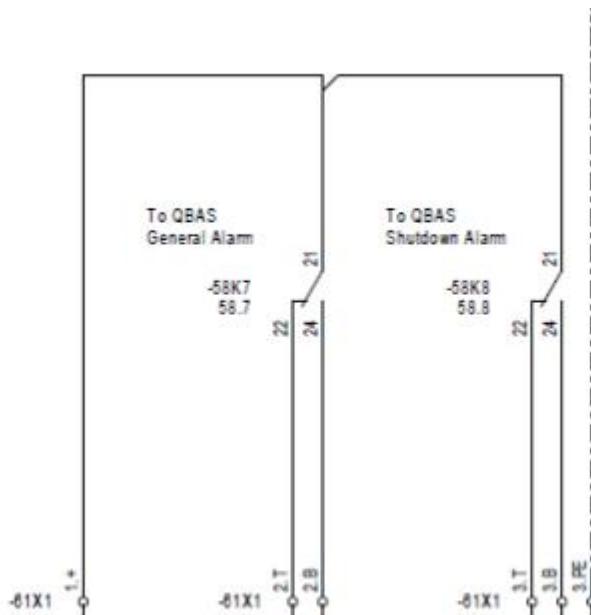
It is always the Client's responsibility to assure the right equipment for unloading, loading, craning and moving the equipment of the trailers and lifting the equipment onto the freezers and onto the roof.

| <u>Equipment</u>                                         | <u>Approx. Weight</u>               |
|----------------------------------------------------------|-------------------------------------|
| Complete LSSU                                            | 4,0 Tons                            |
| <b><u>Total Weight per. LSSU</u></b>                     | <b><u>4.0 Tons</u></b>              |
|                                                          |                                     |
| Compressor-Skid A                                        | 800 Kg pr. Compressor Skid          |
| Compressor-Skid B                                        | 800 Kg pr. Compressor Skid          |
| <b><u>Total Compressor-Skids per Freezer</u></b>         | <b><u>1.6 Tons</u></b>              |
|                                                          |                                     |
| Dry Cooler A                                             | 260 Kg pr. Dry Cooler               |
| Dry Cooler B                                             | 260 Kg pr. Dry Cooler               |
| <b><u>Total Dry Cooler per Freezer</u></b>               | <b><u>520 Kg without Glycol</u></b> |
|                                                          |                                     |
| <b><u>Required Space Outside During Installation</u></b> |                                     |
| Workshop Container 20 ft.                                | 6,0 Tons                            |
| Storage Container 20 ft.                                 | 5,5 Tons                            |
| Office Container 20 ft.                                  | 3,5 Tons                            |
|                                                          |                                     |
| <b><u>Heavy Replaceable Equipment</u></b>                |                                     |
| Evaporator                                               | 65 Kg                               |
| Evaporator Fan                                           | 35 Kg                               |
| LT Compressor                                            | 90 Kg                               |
| HT Compressor                                            | 90 Kg                               |
| Condenser                                                | 35 Kg                               |

## 5 Interface with LOWENCO Equipment

All communication from the LOWENCO System to the BMS is through a switch and an ethernet cable behind the HMI or through Modbus TCP-IP.

You will therefore be able to monitor and see everything that goes on, on the HMI in your BMS system.


Please see addendum 2 for "Modbus TCP-IP List" for 1 system on 1 Freezer.

### ***Other Hard Wire Signal:***

On top of the ethernet cable and the MODBUS LOWENCO also have two output signals from each main panels. One urgent and one non-urgent output for the 2 relays shown below. Please see the picture below for illustration.

The urgent signal refers to the "failures" mentioned in the alarm list/FAT/SAT. Failures are always marked with the color red on the HMI. The urgent signal is critical failures for the compressor-skids, which will stop the compressor-skid.

The non-urgent signal refers to the "Alarms" mentioned in the alarm list/FAT/SAT. Alarms are always marked with the color yellow on the HMI. The non-urgent signal is not critical for the Compressor-Skids and they Compressor-Skids will continue to run.



## 6 Power Supply

All the fuses are based on the fuses in the Client's distribution panels. LOWENCO need these fuses in front of each main panel and equipment to ensure the selectivity of the equipment.

The Client is responsible for delivering the distribution panels and connecting all panels, HMI, sliding door etc. to their power supply. LOWENCO is following the machine directive EN60204-1 and LOWENCO can therefore not install any equipment to the Client's power supply and/or distribution panels.

In order to secure the redundancy and therefore the safety of the products inside the Freezers, it is strongly recommended that all Main Panels 1 is supplied from distribution supply "A" and all main panels 2 are supplied from distribution supply "B". This is to secure if one power source is experiencing a power failure, the Freezers are still able to maintain the designated setpoint inside the Freezer.

LOWENCO recommend a UPS supply to all main panels and HMI panels as shown in the table below. This is to ensure the temperature trend logging etc. can always be monitored.

For further information and a visualization of the power feed please see "[\*\*SRS – Addendum 1, Main feed single line\*\*](#)"

### 6.1 Storage Freezer

Storage Freezer:

|              |                                           |
|--------------|-------------------------------------------|
| Main Panel 1 | 40A @ 3x400V +N +PE <u>+ UPS 230V 10A</u> |
| Main Panel 2 | 40A @ 3x400V +N +PE <u>+ UPS 230V 10A</u> |
| Common Panel | 16A @ 3x400V +N +PE                       |

Add further Freezers. They all have the same power requirements

### 6.2 Blast Freezer

Blast Freezer:

|              |                                           |
|--------------|-------------------------------------------|
| Main Panel 1 | 63A @ 3x400V +N +PE <u>+ UPS 230V 10A</u> |
|--------------|-------------------------------------------|

Add further Freezers. They all have the same power requirements

### 6.3 Corridor

Corridor -25°C:

|              |                                           |
|--------------|-------------------------------------------|
| Main Panel 1 | 40A @ 3x400V +N +PE <b>+ UPS 230V 10A</b> |
| Main Panel 2 | 40A @ 3x400V +N +PE <b>+ UPS 230V 10A</b> |
| Common       | 16A @ 3x400V +N +PE                       |

### 6.4 Anteroom

Anteroom 2-8°C:

|                 |                     |
|-----------------|---------------------|
| Compressor Unit | 10A @ 3x400V +N +PE |
| Control Unit    | 10A @ 3x400V +N +PE |

### 6.5 Common

Common:

|       |                            |
|-------|----------------------------|
| HMI 1 | <b><u>UPS 230V 10A</u></b> |
| HMI 2 | <b><u>UPS 230V 10A</u></b> |

## 7 Automation Requirement

The IP Address in the table below is to be filled out by the end Client.

The table below is a complete IP Address list for 2 Freezer Units and 1 Corridor and the 2 HMI

The control system consists of three control boards as listed:

- Panel A1 Main Control Board- System 1
- Panel B1 Main Control Board- System 2
- Panel C1 Room Control Board – Common for System 1 & 2

### 7.1 IP addresses for 2-pack Freezer installation

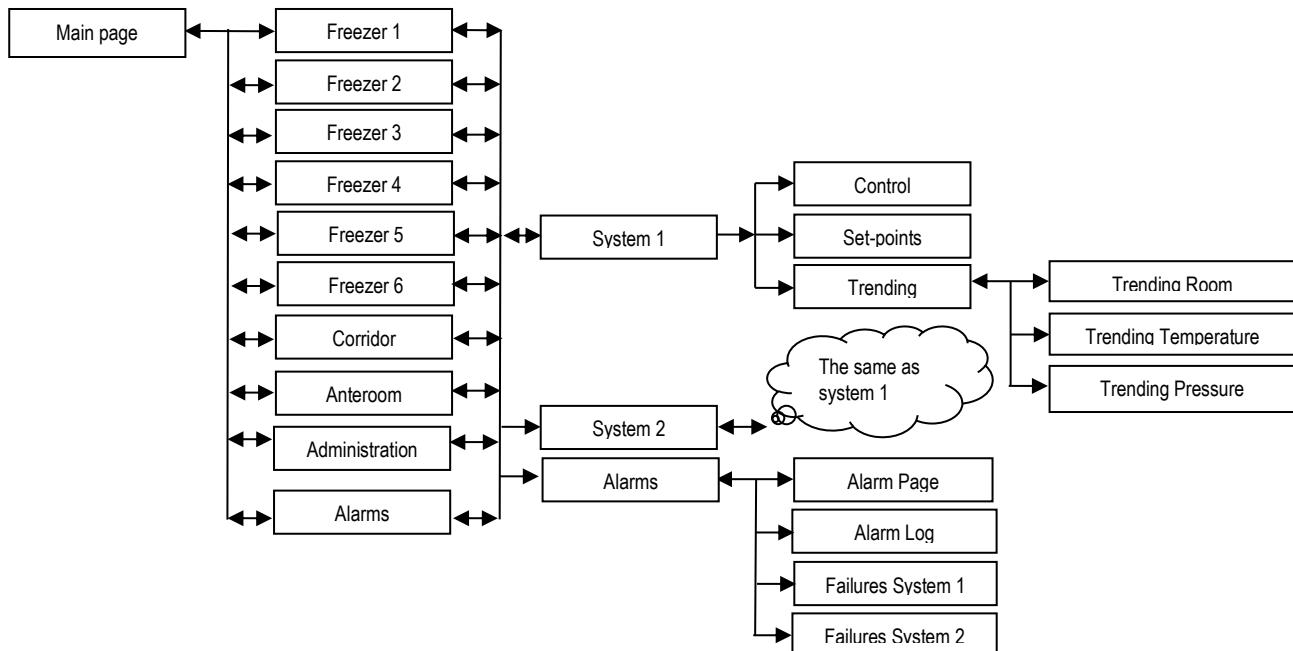
| System                          | IP Address | Mac Address |
|---------------------------------|------------|-------------|
| IPC in +HMI<br>=CP-301-001+HMI- |            |             |
| IPC in +HMI<br>=CP-302-001+HMI- |            |             |
| ModBus TCP - Gateway            |            |             |

### 7.2 HMI Screen and Access Levels

Each Compressor-Skid are controlled by a dedicated Siemens S7-1500 series PLC. The PLC program is made in in TIA portal. All communication will be connected to and displayed on a Siemens 19" HMI Touch Screen located in the Technical Space as well on a similar Siemens 19" HMI Touch Screen located outside the Corridor / Inside the Anteroom, for easy operation.

A Schematic view of the installation, Freezer details, all vital components on each system, alarm log, set points and trend curves are some of the items accessible from the HMI Touch Screen.

The HMI Touch Screen have 4 different standard access levels and in order to make changes to the set points and control the system, the user needs to log in. Please see the picture below for the 4 different standard access levels.


If the Client want to differ from these security access levels it will come with an extra price and LOWENCO will need these access levels when signing the P.O the latest.

| Function                       | Operator | Supervisor | Administrator | Lowenco |
|--------------------------------|----------|------------|---------------|---------|
| View & Acknowledge Alarms      | X        | X          | X             | X       |
| Lead, Start and Stop           | X        | X          | X             | X       |
| Navigating HMI                 | X        | X          | X             | X       |
| Navigate Trends                | X        | X          | X             | X       |
| Manual Defrost Control         | -        | X          | X             | X       |
| Settings                       | -        | -          | X             | X       |
| Administration                 | -        | -          | X             | X       |
| Service Access, Manual Control | -        | -          | -             | X       |

**Table of security access levels** X = allowed

### 7.3 Page Tree

In the below diagram you can see the Page Tree of the HMI Touch Screens. Both HMI's have the same Page Tree layout, are a duplicate of each other with the capability of working on both HMI's at the same time.



## 8 Material and Design Requirements

All components used for production is based on high end worldwide suppliers, so the Client can get spare parts on a Day-to-Day basis.

LOWENCO is the key manufacturer for some of the important and essential parts for the Freezer. These parts can of course only be ordered at LOWENCO.

### 8.1 Supplier List / Manufacturer

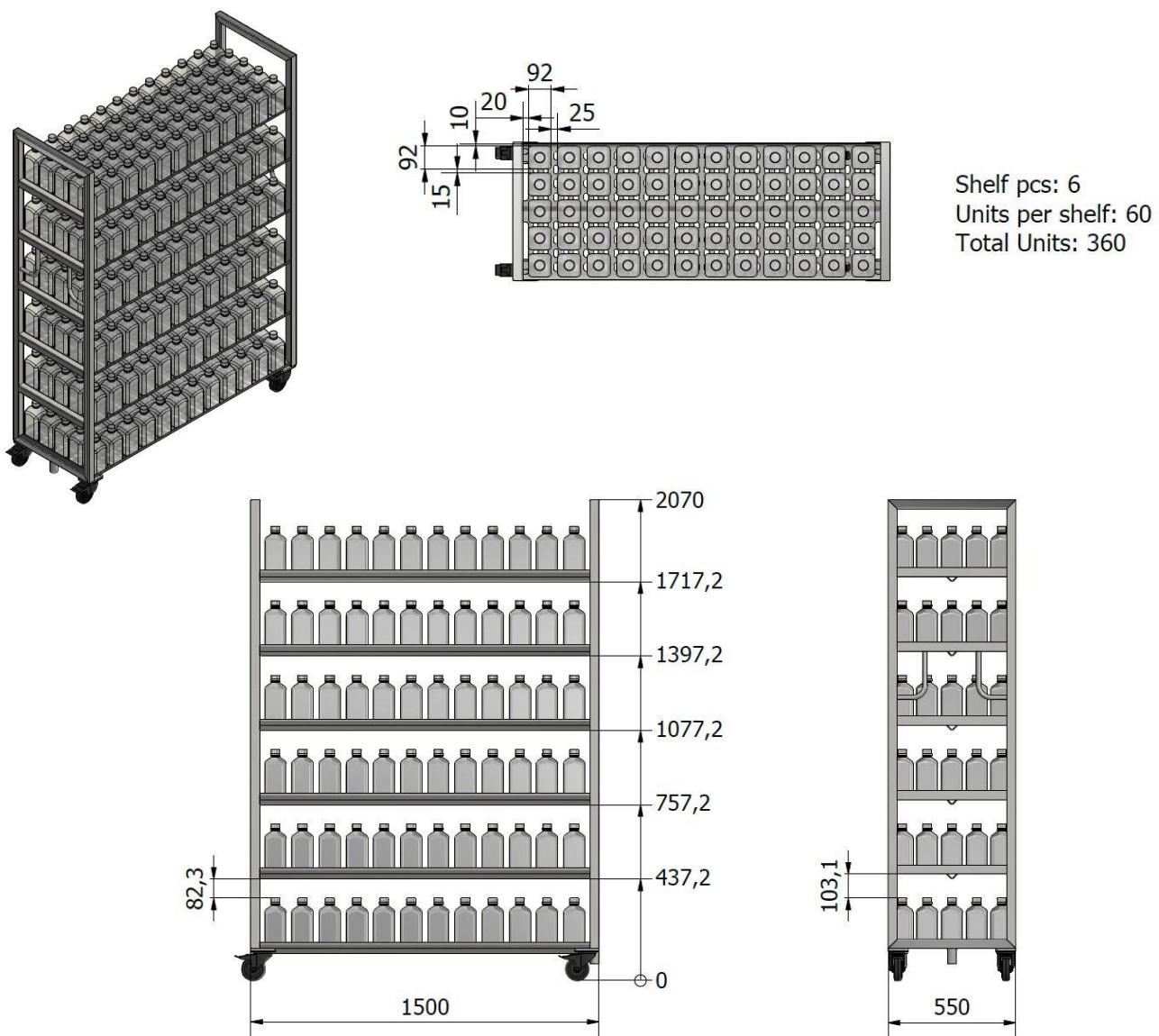
- *LOWENCO*
- *Siemens*
- *Bitzer*
- *Gunther*
- *OCS Cold*
- *Cool-it*
- *Danfoss*
- *Grundfoss*
- *Herose*
- *Schneider*
- *WVN Hansa*
- *Kingspan*
- *Swep*
- *ESKA*
- *JEVI*
- *Fermod*
- *EBM Pabst*
- *VEM*
- *Armaflex*

### 8.2 RSPL – Recommended Spare Parts List

Please see "[SRS – Addendum 3, Recommended Spare Part List](#)" for the full recommended spare part list.

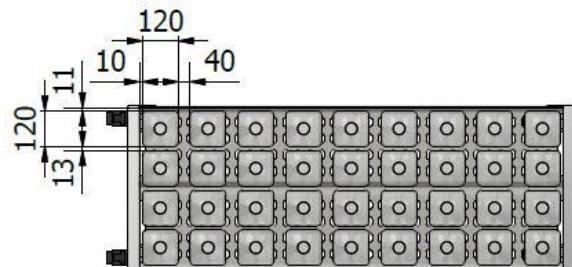
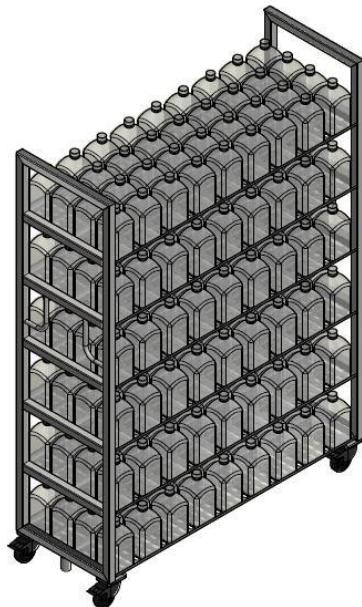
## 9 Trolley Designs for LSSU

All LSSU Freezers are based on having 2 Trolleys per door. In total there will be 8 Trolleys per Freezer.

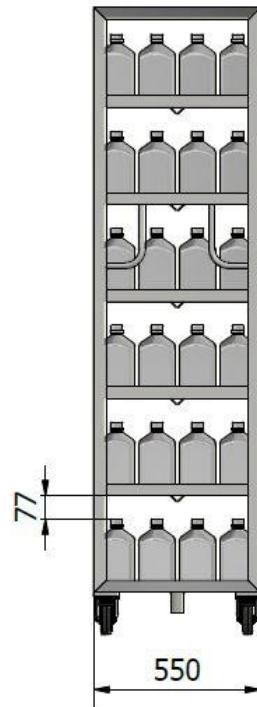
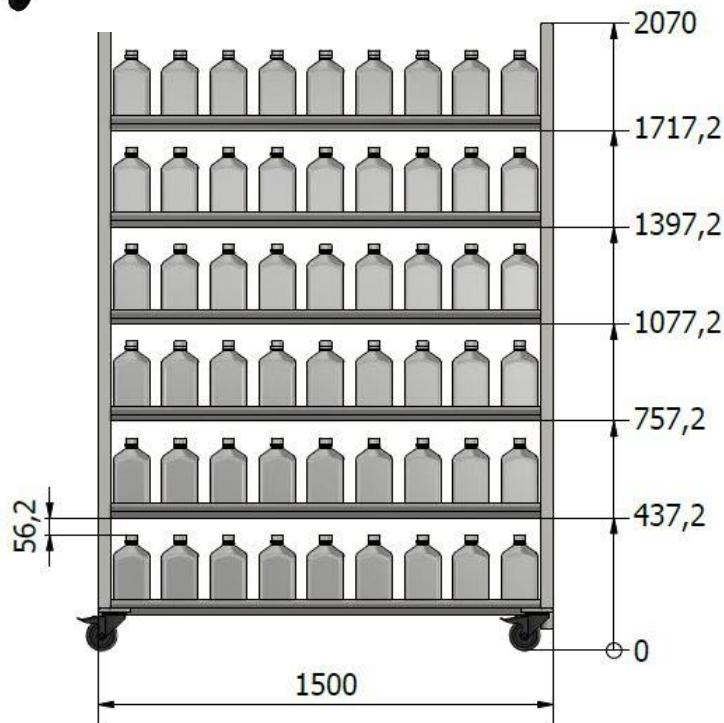

All Trolleys are universal for the LSSU Freezer. The smaller bottles will have 6 shelves and the larger bottles will have 5 shelves per Trolley. Each Trolley has a maximum weight capacity of 400kg. The LSSU Freezer have a maximum cooling capacity of 3200kg.

All these Trolleys can be available for the Client to choose from if the Trolleys are included in the quote.

If the Client wants LOWENCO to produce these Trolleys and wants to differ from these mentioned in this section, it will come with an extra price and LOWENCO will need these Trolley dimensions when signing the P.O the latest.

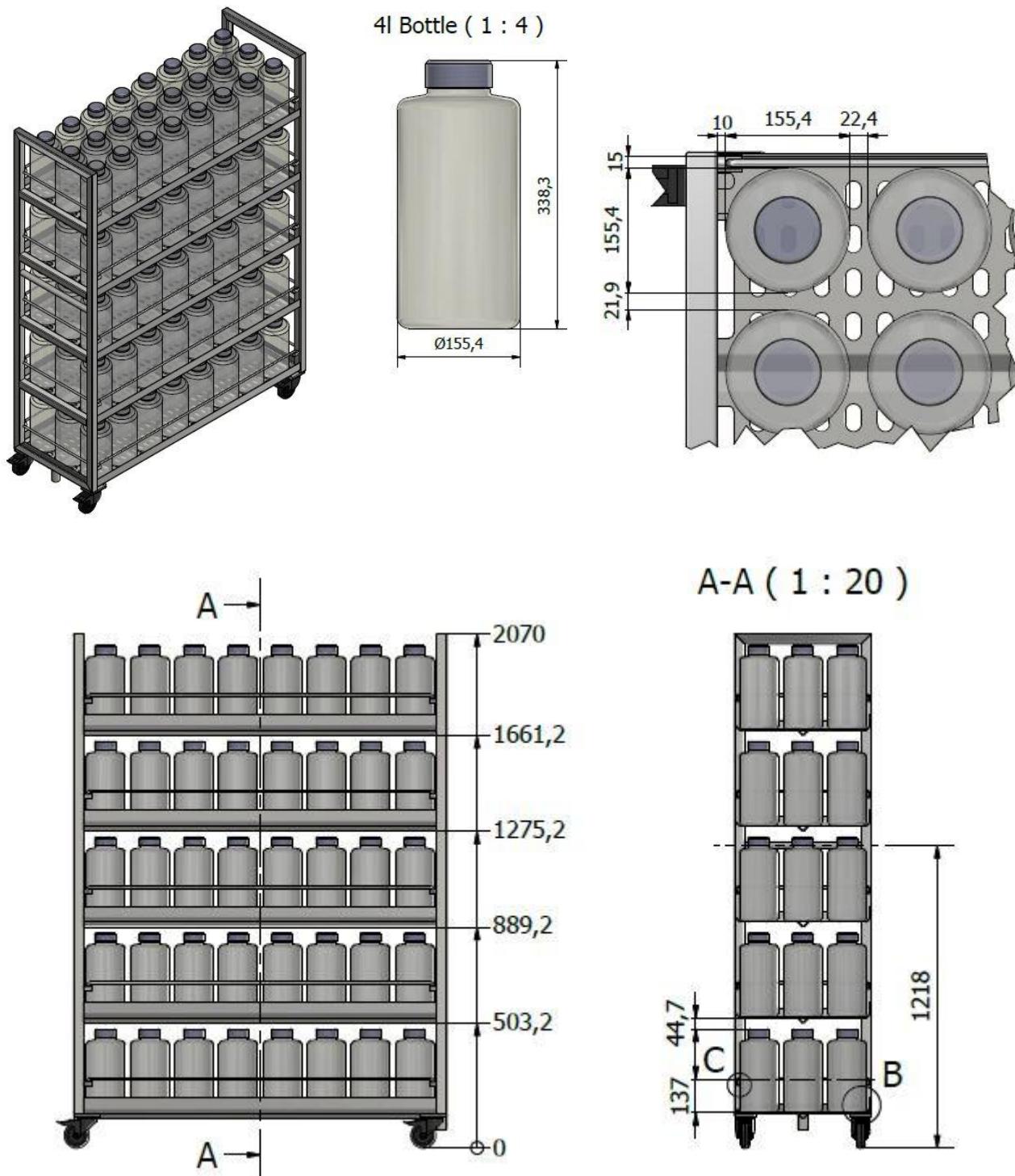


### 9.1 Universal Trolley - 1 Liter Bottle

Trolley with 360 x 1-liter bottles.

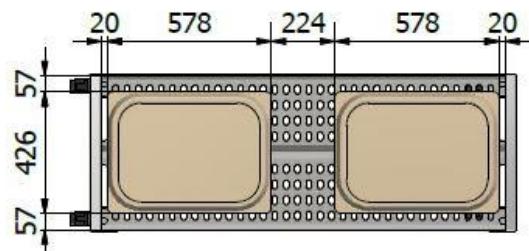

## 9.2 Universal Trolley - 2 Liter Bottle

Trolley with 216 x 2-liter bottles.

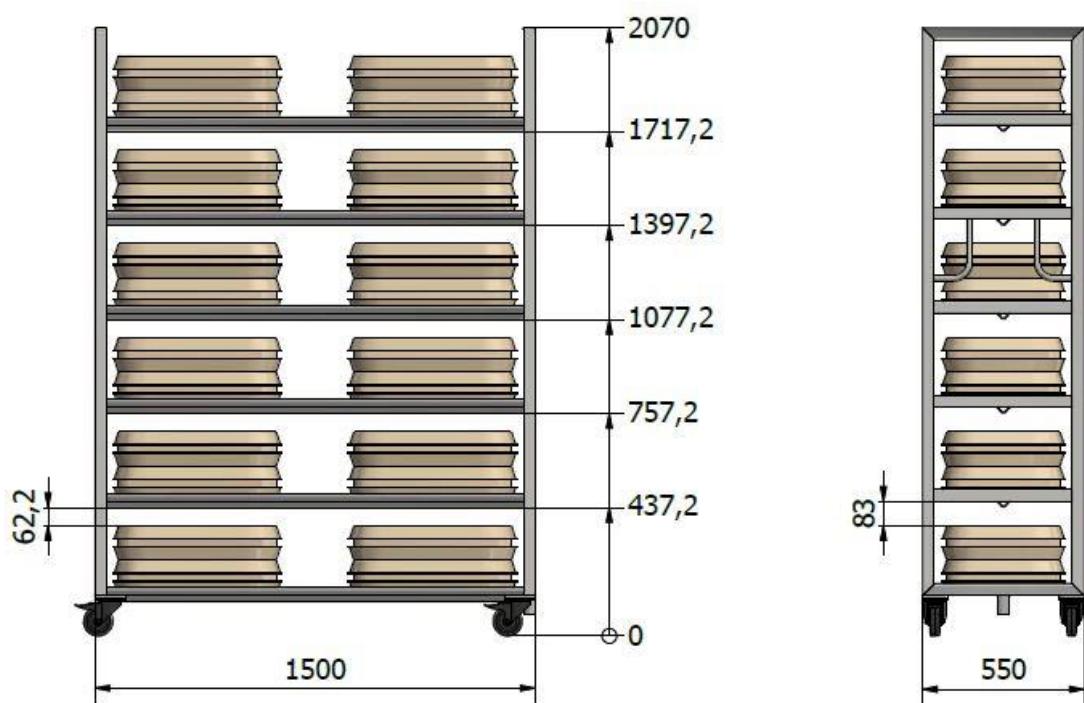



Shelf pcs: 6  
Units per shelf: 36  
Total Units: 216




### 9.3 Universal Trolley – 4 Liter Bottle

Trolley with 120 x 4-liter bottles.




#### 9.4 Universal Trolley – 6 Liter Bags

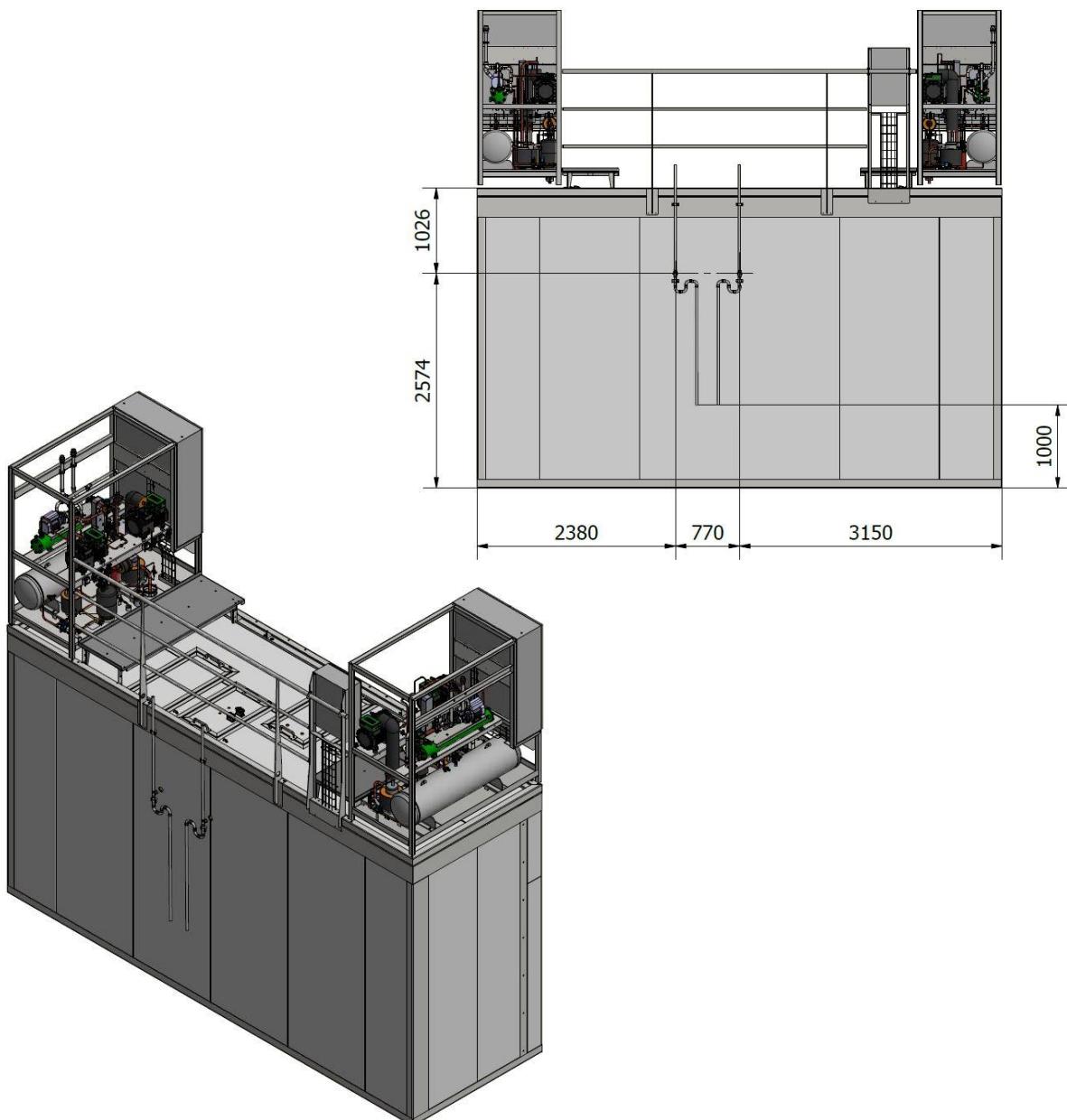
Trolley with 24 x 6-liter bags.



Shelf pcs: 6  
Units per shelf: 4  
Total Units: 24

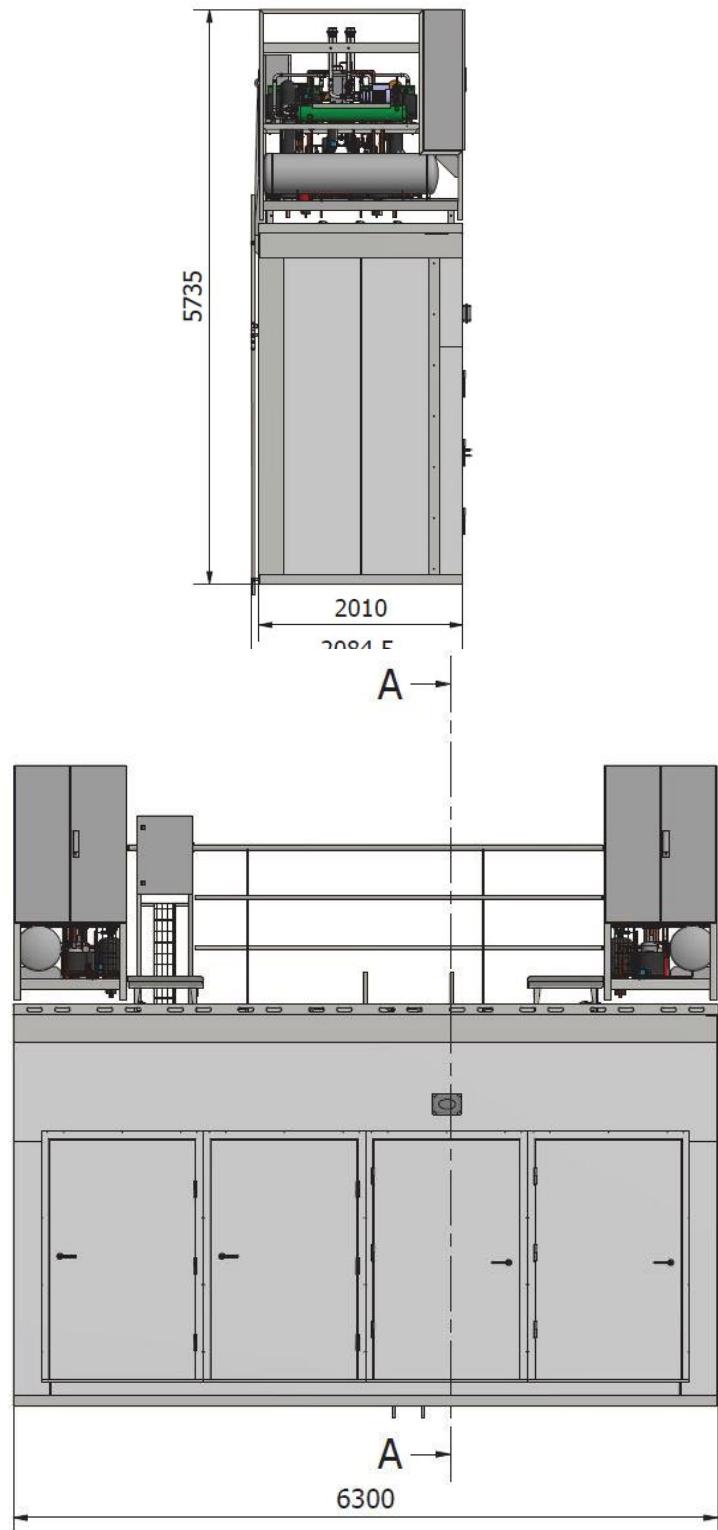
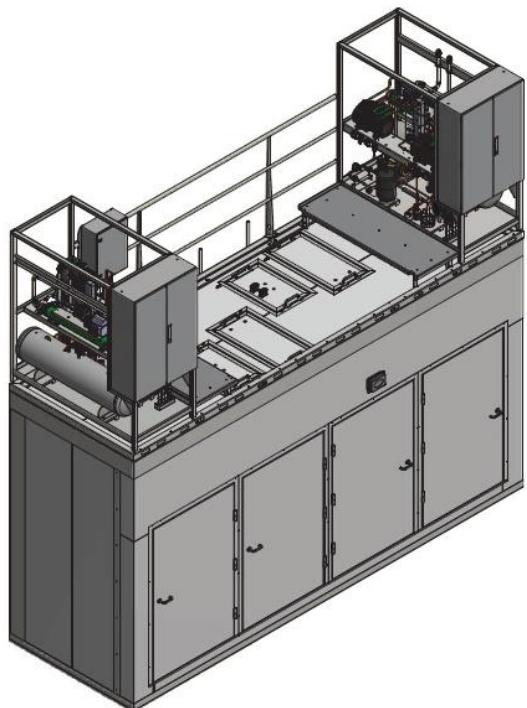


## 10 Condensate Drain


Every Freezer has 2 condensate drainpipes each. The condensate drainpipe from each Freezer is located in the back of the Freezer unit.

Each drain has a flow of approx. 5-8 liters every 14 days, when the Freezer and Compressor-Skids are running in normal operation mode. It only drains when a system (Compressor-Skid) is doing a defrost, while the other system (Compressor-Skid) is in operation.

The drain piping will as standard be left 1 meter above the bottom frame on the backside of the Freezer. The Client will then make sure to connect to this stainless-steel piping to collect the water from the condensate drain.



The sizes for the drainpipes are Ø28mm from Geberit prepared for stainless steel press-fittings.

### 10.1 Drain placement



## 11 Dimensions

### 11.1 LSSU



## 12 Documentation Package (SDI)

SDI = Standard Documentation Index

LOWENCO's SDI shown in the table below is standard delivered right after handover of the project.

All documentation is delivered on one USB-Stick for each Freezer (Softcopy).

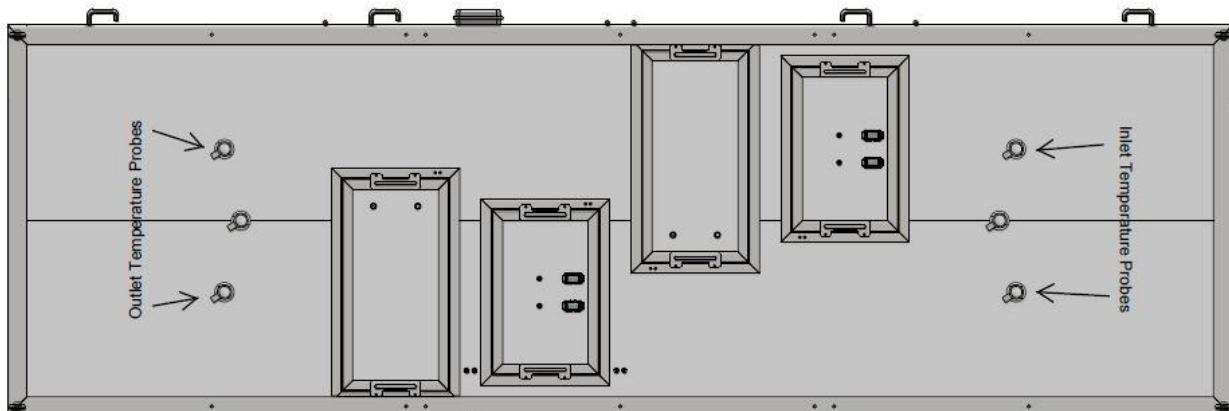
If the Client want to differ from this documentation package it will come with an extra price and LOWENCO will need a specified documentation package agreement when signing the P.O the latest.

| SDI – Standard Documentation Index |                                              |                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sections                           | Name of Section                              | Sub Sections                                                                                                                                                                                                      |
| 1                                  | Equipment List                               | N/A                                                                                                                                                                                                               |
| 2                                  | P&ID Index                                   | N/A                                                                                                                                                                                                               |
| 3                                  | Equipment Specifications                     | P&ID Components Datasheet                                                                                                                                                                                         |
| 4                                  | Purchase Order Index                         | N/A                                                                                                                                                                                                               |
| 5                                  | Instruments                                  | N/A                                                                                                                                                                                                               |
| 6                                  | Operating, Installation & Maintenance Manual | N/A                                                                                                                                                                                                               |
| 7                                  | Material Specification & Certificates Index  | Containers and Pressure Safety Valve Certificates.                                                                                                                                                                |
| 8                                  | Electrical Documentation                     | N/A                                                                                                                                                                                                               |
| 9                                  | Computerized Systems                         | N/A                                                                                                                                                                                                               |
| 10                                 | Spare Parts List                             | N/A                                                                                                                                                                                                               |
| 11                                 | Addendum                                     | 01 – Calculations<br>02 – Declaration of Conformity<br>03 – FAT Protocol<br>04 – FAT Protocol (Result)<br>05 – Pressure Test (Result)<br>06 – PED Certificates<br>07 – SAT Protocol<br>08 – SAT Protocol (Result) |

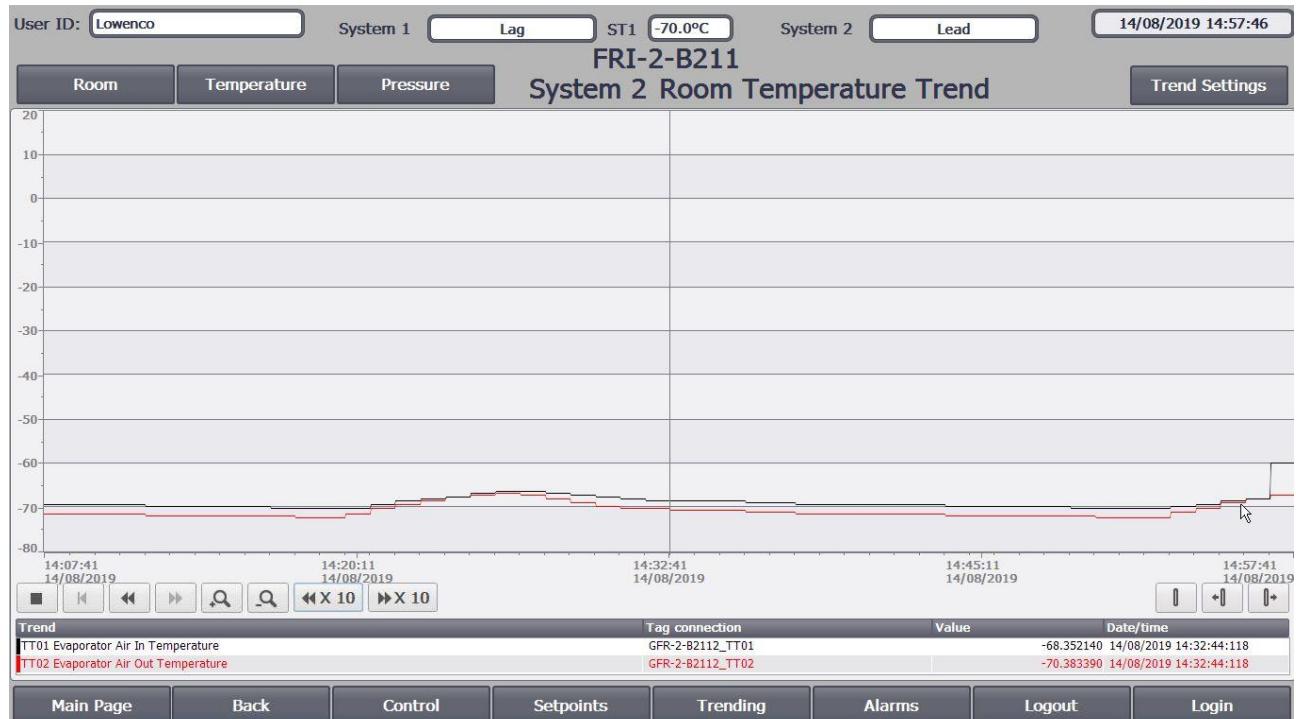
## 13 Performance Testing

A temperature mapping is performed during SAT to make sure all Freezers and Compressor-Skids are performing successful and equally.

The temperature studies that are taking place during the SAT are:


- Pull Down
- Defrost

The mapping is performed with "Empty Chamber" and the 2 temperature probes in the inlet and outlet of the Evaporator duct. The mapping will afterward be documented by using screen dumps, from the HMI on each Compressor-Skid, on each Freezer to make sure all the Freezers are performing equally.


By accepting this section in LOWENCO's SRS, the Client agrees on LOWENCO to receive the approved temperature validation tests including excel data and curves after completion for all tests.

Please note: LOWENCO is as standard not a part of the Client's validation. Clients have previously been operating the Freezers incorrect. LOWENCO is therefore now offering a 2-day training at the Handover and assistance during the Clients validation upon request.

### 13.1 Temperature Probe Location



### 13.2 HMI Inlet and Outlet Temperature Curve



## 14 Pipe Labelling

The pipe labelling LOWENCO are using, for the Refrigerant and Glycol pipes are:

- 1) PML-P100 (D50)R CUS – 1014227 (DO NOT STEP)



- 2) PML-T105 (26X280)R CUS – 1014257 Caution Hot gas Line R23
- 3) PML-T105 (26X280)R CUS – 1014257 Caution Suction Line R23
- 4) PML-T105 (26X280)R CUS – 1014257 Caution Liquide Line R23



- 5) PML-T103 (26X280)R CUS – 1014253 Air Flow



- 6) PML-T109 (26X280)R CUS – 1014265 Propylene Glycol



## 14.1 Design



LOWENCO A/S · Bavnevej 10 · DK-6580 Vamdrup · Tel. +45 38 400 300 · [www.lowenco.com](http://www.lowenco.com)

CREATING A BETTER WORLD - ONE UNIT AT A TIME

## 15 Electrical Requirements

### 15.1 Cable Labeling

The cable labeling used for all internal cable labeling are a black on yellow Phoenix labeling.

Specification:

- Cable Diameter: > 6mm
- Lettering Field Size: 55 x 15 mm
- Ambient Temperature: -25°C .... 80°C
- Component: Halogen-Free
- Flammability Rating According to UL 94: V0
- Material: PUR
- Wibe Resistance: DIN EN 61010-1 (VDE 0411-1)



### 15.2 Cable Type

The cables used is all halogen free.

Digital signals and power cables is type H-JZ.

Analog signals cables are type CH-JZ.

EMC power cables is type ROZ1-K.

### 15.3 Cable Color Codes

The cable color codes below are the standard LOWENCO color codes, and they will be used on all electrical panels.

#### 15.3.1 Control Panels

| Main Supply |                |
|-------------|----------------|
| L1          | Brown          |
| L2          | Black          |
| L3          | Grey           |
| N           | Light Blue     |
| PE          | Yellow / Green |

| 230V Control Voltage |                       |
|----------------------|-----------------------|
| 230V                 | Red                   |
| 0V                   | Red with White Stripe |

| 24V Control Voltage |                             |
|---------------------|-----------------------------|
| 24V                 | Dark Blue                   |
| 0V                  | Dark Blue with White Stripe |

| Interlock |        |
|-----------|--------|
|           | Orange |

LOWENCO A/S · Bavnevej 10 · DK-6580 Vamdrup · Tel. +45 38 400 300 · [www.lowenco.com](http://www.lowenco.com)

CREATING A BETTER WORLD - ONE UNIT AT A TIME

### 15.3.2 Installation

| Main Supply |                |
|-------------|----------------|
| L1          | Brown          |
| L2          | Black          |
| L3          | Grey           |
| N           | Light Blue     |
| PE          | Yellow / Green |

| Control Wires                  |
|--------------------------------|
| Black Cores with White Numbers |

## 16 Pipe Size

The piping size are only based on the piping which leaves the Compressor-Skid and goes to the Freezer and the Dry Coolers.

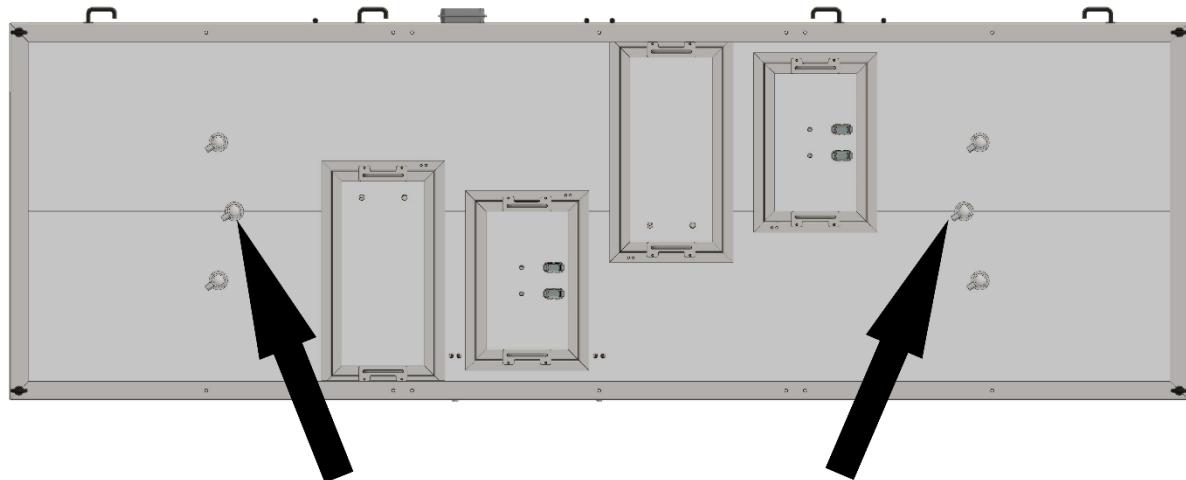
### 16.1 Freezer Piping

| Freezer Piping |                            |               |                          |                 |
|----------------|----------------------------|---------------|--------------------------|-----------------|
| Pipe Size      | Total Size with Insolation | Pipe Material | Function                 | Insolation Type |
| 3/8"           | Ø90 mm                     | Copper        | Liquid Pipe / Inlet pipe | Armaflex        |
| 1/2"           | Ø45 mm                     | Copper        | Hot Gas / Defrost        | Armaflex        |
| 1 1/8"         | Ø170 mm                    | Copper        | Suction / Return         | Armaflex        |

The above-mentioned Freezer piping sizes are for EACH Compressor-Skids and for 1 Freezer there are 2 Compressor-Skids.

### 16.2 Dry Cooler

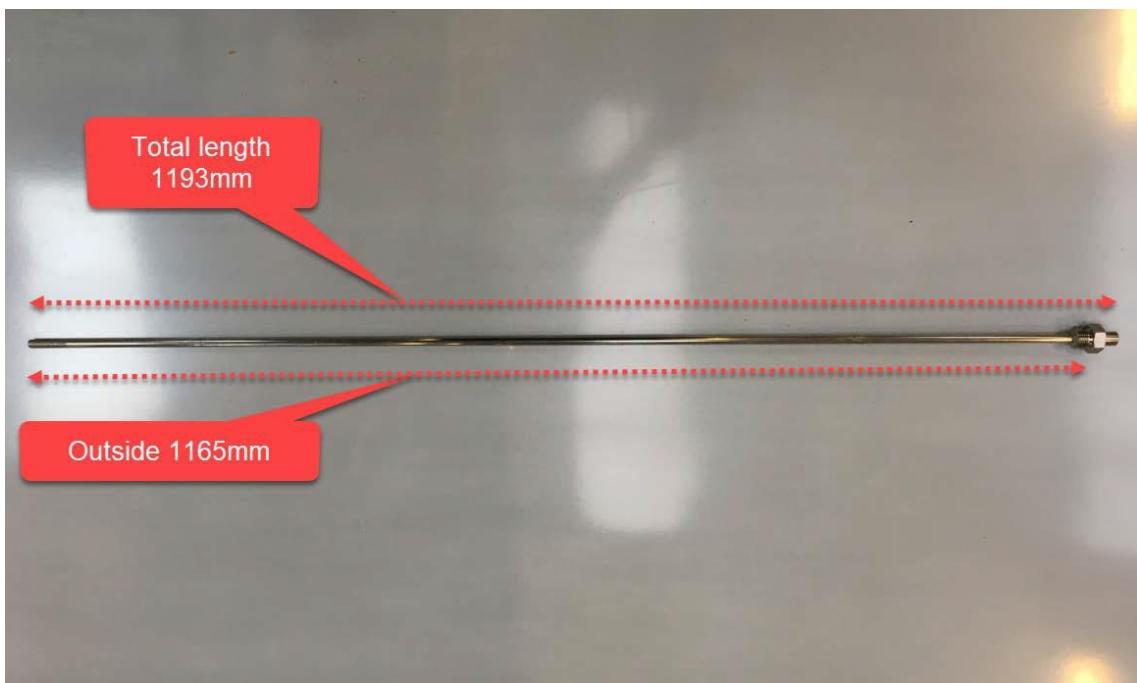
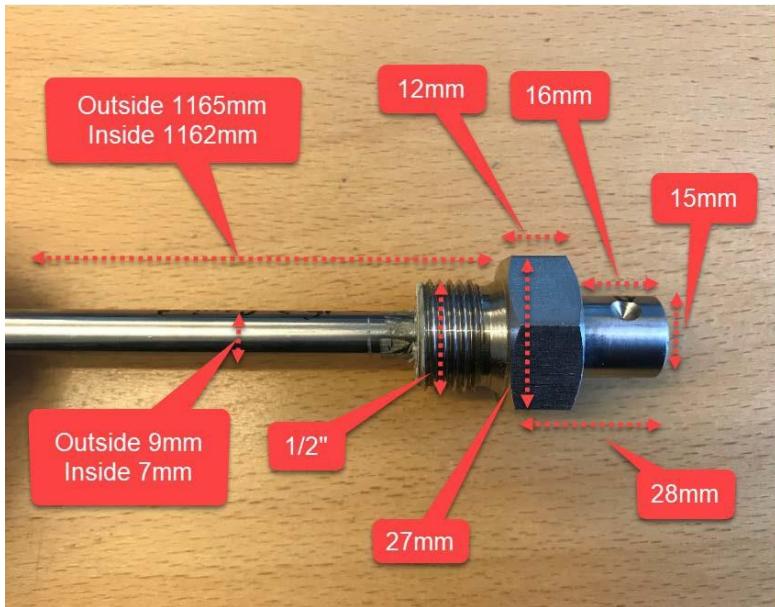
| Dry Cooler Piping |                 |             |
|-------------------|-----------------|-------------|
| Size              | Materiel        | Function    |
| Ø35mm             | Stainless Steel | Inlet Pipe  |
| Ø35mm             | Stainless Steel | Return Pipe |


The above-mentioned Dry Cooler piping sizes are for EACH Compressor-Skids and for 1 Freezer there are 2 Compressor-Skids.

There is no insolation on the Dry Cooler pipes, due to their relatively low surface temperature of approx. 25°C to 35°C.

## 17 Thermo-Well

| Thermo-Well Information |                               |
|-------------------------|-------------------------------|
| Protective Tube:        | 9mm OD. 1mm wall              |
| Neck Length:            | 25mm                          |
| Insertion Length:       | 1165mm                        |
| Process Connection:     | 1/2" BSP                      |
| Connection Head:        | B: Degree of protection IP 65 |



### 17.1 Location



Thermo-well Location No. 1

Thermo-well Location No. 2

## 17.2 Design



## 18 Cooling of Compressor Skid

There are two ways the cooling of the Compressor-Skids can take place.

The first option is to have the Compressor-Skids to be cooled by the Client's already existing chilled water plant by Heat Exchangers. If the Client wants this solution, LOWENCO will not be delivering any Dry Coolers and/or Heat exchangers to support the cooling of the Compressor-Skids. It is entirely the Client's responsibility to deliver and mount the Heat Exchanger if the chilled water plant is chosen.

The second option is to choose the Dry Cooler to cool the Compressor-Skids. The Dry Coolers will then be delivered and installed by LOWENCO. Each Dry Cooler belongs to its own Compressor-Skid, meaning if there are 10 Compressor-Skids, there will be 10 Dry Coolers, one for each Compressor-Skid to keep the full redundancy.

### 18.1 Dry Cooler

Each Compressor-Skid does as standard have its own Dry Cooler in order to have the 100% redundancy no matter what happens.

Each Dry Cooler has a dry weight of approx. 260kg

Tube volume for each Dry Cooler are 22,3 liters.

Medium used in the Dry Cooler are Propylene Glycol.

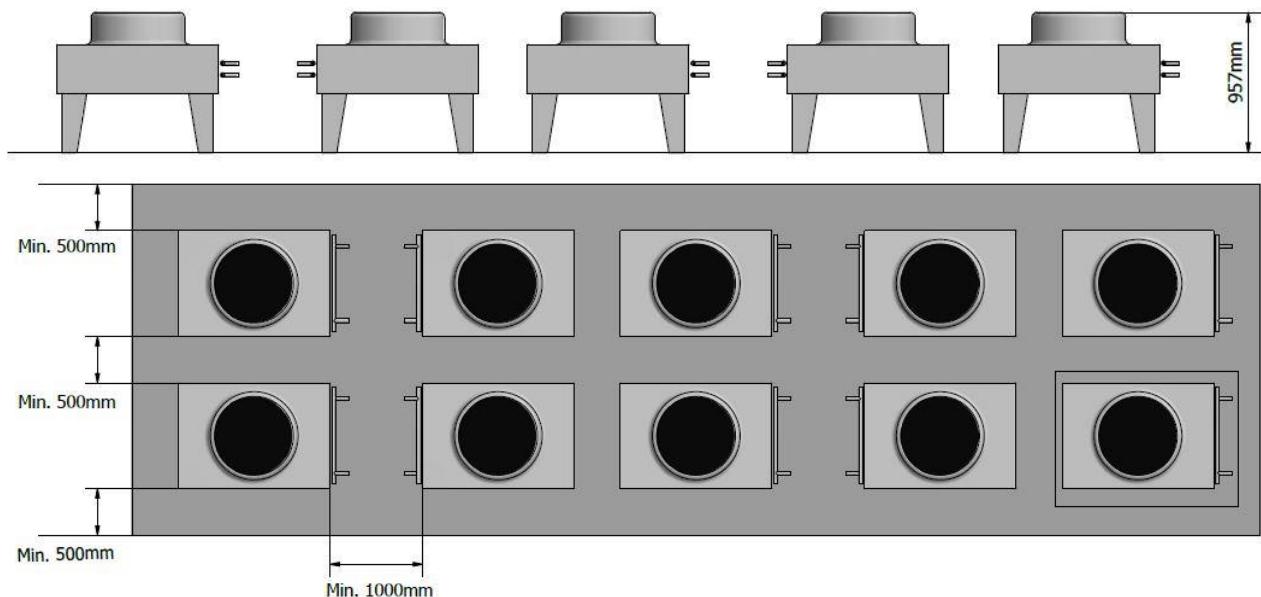
The casing is of Galvanized Steel, RAL 7035

The noise level at 10 meters from the Dry Coolers are 52 dB(A).

The Dry Coolers does as standard include a maximum of 10-meter piping, meaning the Dry Coolers can as standard not be placed longer than 10 meters away from the Compressor-Skids. Longer piping distance than 10 meter is as standard not included in the quotation.

### 18.2 Dry Cooler Construction Design

As standard, each Compressor-Skid have its own Dry Cooler.


One freezer has 2 compressor-skids and therefore also 2 Dry Coolers. The Corridor also consists of 2 Compressor-Skids and therefore also 2 Dry Coolers.

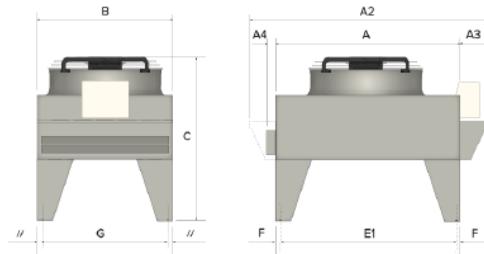
The Dry Coolers can either be placed in a single line, or next to each other, or with a walk-path between 2 lines of Dry Coolers.

The Dry Coolers can either be placed on a concrete or steel construction on the ground level or on the roof.

The Dry Coolers needs to be placed as close to the Compressor-Skids as possible to secure the correct inlet and outlet temperature and a successful defrost sequence.

When building the construction underneath the Dry Coolers, it is important to keep in mind that the Dry Coolers need a minimum of 500mm between each other, and a minimum of 1000mm in front of each other as shown below, to secure the functionality of the Dry Coolers and the Dry Coolers not to interrupt each other.




On the left, is a picture of an installation where the Dry Coolers are placed in one single line and placed on a concrete construction at ground level.



On the right is a picture of an installation where the Dry Coolers are placed in 2 single lines on each side of the walk-path due to a larger installation. This installation is placed on a steel construction on the roof above the Compressor-Skids.

### 18.3 Dry Cooler Design & Dimensions

In the below picture you can see the dimensions of the Dry Coolers which are used for the Freezers.



A 1503 mm

A3 195 mm

F 40 mm

B 1130 mm

A4 70 mm

C 1333 mm

G 1044 mm

A2 1893 mm

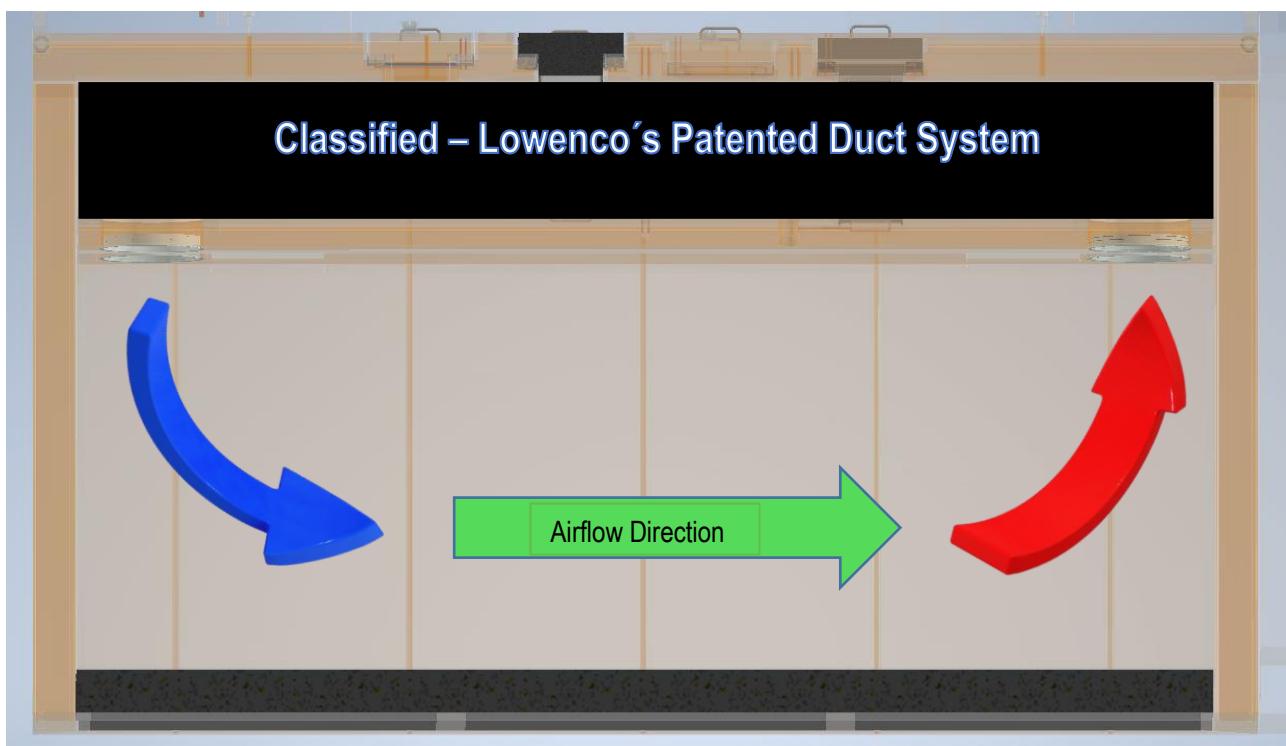
E1 1423 mm

## 19 Parameters List -70°C

Below is LOWENCO's Standard Parameter List for -70°C freezers. Changes will come with an extra cost.

| Parameter List -70°C                | P&D tag | parameter | Units | Min. | Max. | Default Value | Parameter Type | Password level |            |               |         |
|-------------------------------------|---------|-----------|-------|------|------|---------------|----------------|----------------|------------|---------------|---------|
|                                     |         |           |       |      |      |               |                | Operator       | Supervisor | Administrator | Lowenco |
| <b>Room Set-Point</b>               |         |           |       |      |      |               |                |                |            |               |         |
| Room Set-Point                      |         | ST1       | °C    | -80  | -40  | -70           | Parameter      | -              | -          | x             | x       |
| Main Difference                     |         | P1        | K     | 1    | 10   | 3             | Parameter      | -              | -          | x             | x       |
| Assist Difference                   |         | P2        | K     | 1    | 10   | 3             | Parameter      | -              | -          | x             | x       |
| <b>Alarm Set-Points</b>             |         |           |       |      |      |               |                |                |            |               |         |
| Room Temperature. High              |         | AH1       | °C    | -80  | 40   | -60           | Alarm          | -              | -          | x             | x       |
| Delay Room Temperature. High        |         | AD1       | Min   | 0    | 60   | 60            | Alarm          | -              | -          | x             | x       |
| Room Temperature. Hi Hi             |         | AH2       | °C    | -80  | 40   | -55           | Alarm          | -              | -          | x             | x       |
| Delay Room Temperature. Hi Hi       |         | AD2       | Min   | 0    | 60   | 60            | Alarm          | -              | -          | x             | x       |
| Room Temperature. Low               |         | AL1       | °C    | -80  | 40   | -75           | Alarm          | -              | -          | x             | x       |
| Delay Room Temperature. Low         |         | AD3       | Min   | 0    | 60   | 5             | Alarm          | -              | -          | x             | x       |
| Room Temperature. Lo Lo             |         | AL2       | °C    | -80  | 40   | -80           | Alarm          | -              | -          | x             | x       |
| Delay Room Temperature. Lo Lo       |         | AD4       | Min   | 0    | 60   | 5             | Alarm          | -              | -          | x             | x       |
| Door Open Temperature Alarm         |         | DA        | °C    | -80  | 40   | -51           | Alarm          | -              | -          | x             | x       |
| Delay High/Hi Hi Alarm Disable      |         | AD5       | Hour  | 1    | 99   | 36            | Alarm          | -              | -          | x             | x       |
| <b>Evaporator Set-Point</b>         |         |           |       |      |      |               |                |                |            |               |         |
| Fan Release Temperature             |         | FT        | °C    | -50  | -30  | -40           | Parameter      | -              | -          | x             | x       |
| Evaporator Superheat                |         | ST6       | K     | 4    | 20   | 8             | Parameter      | -              | -          | x             | x       |
| <b>Defrost Set-Points</b>           |         |           |       |      |      |               |                |                |            |               |         |
| Defrost Time Interval               |         | D1        | Days  | 0    | 99   | 10            | Parameter      | -              | -          | x             | x       |
| Defrost Control Temperature         |         | DC        | °C    | 0    | 10   | 5             | Parameter      | -              | -          | x             | x       |
| Defrost Control Difference          |         | P6        | °C    | 0    | 10   | 3             | Parameter      | -              | -          | x             | x       |
| Drip Time                           |         | DD        | Min   | 0    | 30   | 15            | Parameter      | -              | -          | x             | x       |
| Defrost Timeout                     |         | DT        | Min   | 0    | 90   | 60            | Parameter      | -              | -          | x             | x       |
| <b>LT Compressor Set-Point</b>      |         |           |       |      |      |               |                |                |            |               |         |
| LT Compressor Pressure Set-Point    | PT01    | ST2       | Bar   | -1   | 10   | 0,2           | Parameter      | -              | -          | x             | x       |
| LT Compressor Difference            |         | P3        | Bar   | -1   | 10   | 0,5           | Parameter      | -              | -          | x             | x       |
| <b>HT compressor Set-Point</b>      |         |           |       |      |      |               |                |                |            |               |         |
| HT Exchanger Set-Point              | PT03    | ST3       | Bar   | 0    | 10   | 2             | Parameter      | -              | -          | x             | x       |
| HT Exchanger Difference             |         | P4        | Bar   | 0    | 5    | 2             | Parameter      | -              | -          | x             | x       |
| HT Compressor Pressure SetPoint     | PT04    | ST4       | Bar   | -1   | 10   | 0,4           | Parameter      | -              | -          | x             | x       |
| HT Compressor Difference            | PT04    | P5        | Bar   | -1   | 10   | 0,5           | Parameter      | -              | -          | x             | x       |
| <b>Compressor Set-Point (LT/HT)</b> |         |           |       |      |      |               |                |                |            |               |         |
| Comp. min. On Time                  |         | CD1       | Sec   | 0    | 999  | 120           | Parameter      | -              | -          | x             | x       |
| Comp. min. Off Time                 |         | CD2       | Sec   | 0    | 999  | 240           | Parameter      | -              | -          | x             | x       |
| Delay Suction Press. Alarm at start |         | CD3       | Sec   | 0    | 60   | 30            | Parameter      | -              | -          | x             | x       |
| <b>Condenser Set-Point</b>          |         |           |       |      |      |               |                |                |            |               |         |
| Condenser Pressure Set-Point        | PT05    | ST5       | Bar   | 10   | 20   | 14            | Parameter      | -              | -          | x             | x       |
| Dry Cooler Outlet Temperature       |         | ST7       | °C    | 20   | 35   | 25            | Parameter      | -              | -          | x             | x       |

## 20 Airflow / Circulation


LOWENCO's Freezer designs are based upon cold airflow inside the Freezer chamber and not cold walls like many upright Freezers. This means the airflow inlet and outlet inside the Freezer must under no circumstances be blocked by bags, wraps etc.

LOWENCO's freezers are as standard made for cold storage of bottles and a few bags with room in between and above each bottle and bag to secure the airflow around the whole bottle/bag.

The Freezer has an airflow of approx.  $3000 \text{ m}^3/\text{h}$  when running assist mode as described in LOWENCO's FDS – Functional Design Specification. When the Freezers are running at the airflow of approx.  $3000 \text{ m}^3/\text{h}$  it is very important not to "wrap" any Bottles, Trolleys, Bags because this will make the air resistance very high, and the Freezer will therefore not operate correctly. Therefore, LOWENCO is offering LOWENCO's standard Trolleys.

If other Bags and Bottles than shown above is wanted, LOWENCO can and will assist in the design approval for the Trolleys to secure airflow and the operation of the Freezers. If different Trolley designs and/or different Bottles/Bags are going to be used, LOWENCO will need to be informed to assure the functionality of the Freezer.

### 20.1 Freezer Airflow Directions



## 21 Required Temperature for Tech-Space

It is important for the Client when planning the building for the Freezers to take the temperatures in the Tech Space into consideration. This is very essential according to the electrical panel building and the defrost sequence for the Compressor-Skids.

The temperatures in the Tech-Space are required to be between 15°C and 30°C.

If the temperature range is not followed in the Tech-Space, LOWENCO can't take the responsibility for unsuccessful defrost sequences and electrical failures and other temperature caused alarms and failures.

It is always the Client's responsibility to assure the ventilation in the Tech-Space. LOWENCO can and will assist with the heat load from the Compressor-Skids, Panels, and Glycol-Piping.

## 22 Site Requirements

LOWENCO's Technicians can always work unobstructed without any Union as Supervisors.

The site will need to be available for our staff daily from 7 am to 10 pm – All days a week including weekends and bank-holidays.

We will bring our own Workshop, Office and Storage- 20 ft. containers and we will need space as close as possible to the installation, for placing the 20 ft. containers during the entire installation period.

LOWENCO will need access to a Pallet Truck, Mobile Elevating Work Platform, and a Forklift with extension forks. It is crucial that these machines are available, from the first day LOWENCO starts commencing work on site. The Technicians from LOWENCO have valid licenses for Forklifts and Mobile Elevating Work Platforms and they can operate these machines at all times by themselves.

LOWENCO will during the installation discard a lot of waste from our building materials. Therefore, we will need waste bins at our disposal throughout the whole installation period.

A Crane needs to be available for unloading the equipment as well for loading on-site workshop- and storage- containers after the installation is finished.

Client signature:

Date:

LOWENCO signature:

Date: